新方法帮量子计算机解决材料问题

发布时间:2020-07-31


202072915293892.jpg

碳化硅晶体原子结构   图片来源:University of Chicago

子计算机在使用新算法进行计算方面有巨大的潜力,涉及的数据量远远超过当今超级计算机的能力。但目前它们仍处于初级阶段,在解决材料学和化学的复杂问题上的适用性有限。例如,它们只能模拟材料研究中几个原子的性质。


近日,美国能源部阿贡国家实验室和芝加哥大学的科学家开发了一种方法,为使用量子计算机模拟真实分子和复杂材料铺平了道路。相关论文近日刊登于《npj计算材料学》。


“我们新开发的计算方法,极大地提高了现有量子力学方法对晶体材料特定缺陷的计算精度,我们已经在量子计算机上实现了它。”该研究负责人、贡国家实验室的Giulia Galli说。


在过去的30年里,量子力学理论方法在预测与量子信息科学和能源应用相关的功能材料的性能方面发挥了重要作用,包括催化剂和储能系统。然而,这些方法对计算要求很高,而且将其应用于复杂的、非均匀的材料仍然具有挑战性。


该团队首先在一台传统计算机上测试了其开发的量子嵌入方法,并将其应用于计算金刚石和碳化硅自旋缺陷的性质。过去,研究人员已经广泛研究了金刚石和碳化硅的缺陷,所以他们有大量的实验数据与预测进行比较。这帮助团队验证了其方法的可靠性。


然后,该团队继续在量子模拟器上测试了同样的计算,最后在IBM Q5 Yorktown量子计算机上进行了测试,结果证实了该量子嵌入方法的高精度和有效性,为在量子计算机上解决多种材料科学问题奠定了基础。


“随着量子计算机的成熟,我们希望该方法将适用于模拟分子和材料感兴趣的区域,以了解和发现催化剂和新药,以及包含复杂溶解物种的水溶液。”Galli说。


来源:《计算材料学》



材料版尾.jpg


X